Page 70 - L&H_ed 242_digital
P. 70

ARTIGO CIENTÍFICO  TERAPIA CELULAR







          8.   DIB, N. et al. One-year follow-up of f   25. HERREROS, J. et al. Autologous intramyocardial   with chronic heart failure after myocardial
           easibility and safety of the first U.S., randomized,   injection of cultured skeletal muscle-derived   infarction. Am Heart J, 2011;162:654-662.
           controlled study using 3-dimensional    stem cells in patients with non-acute myocardial
           guided catheter-based delivery of autologous   infarction. Eur Heart J, 2003;24:2012–2020.  42. PTASZEK, L. M. et al. Towards regenerative
           skeletal myoblasts for ischemic cardiomyopathy                  therapy for cardiac disease. Lancet, 2012, 379,
           (CAuSMIC study). JACC Cardiovasc Interv,   26. HONG, S. J. et al. Intravenous xenogeneic   933–942.
           2009;2:9–16.                    transplantation of human adipose-derived stem   43. REINECKE, H. et al. Electromechanical
                                           cells improves left ventricular function and
          9.  DIB, N. et al. Safety and feasibility of autologous   microvascular integrity in swine myocardial   coupling between skeletal and cardiac muscle.
                                                                           Implications for infarct repair. J Cell Biol.,
           myoblast transplantation in patients with   infarction model. Catheter Cardiovasc Interv,   2000;149(3):731-40.
           ischemic cardiomyopathy: four-year follow-up.   2015;86:E38-E48.
           Circulation, 2005;112:1748–1755.                              44. REINECKE, H.; POPPA, V.; MURRY, C. E. Skeletal
                                         27. INCE, H. et al. Transcatheter transplantation of
          10. DIXIT, P.; KATARE, R. Challenges in identifying the   autologous skeletal myoblasts in pos tinfarction   muscle stem cells do not transdifferentiate into
                                                                           cardiomyocytes after cardiac grafting. J Mol Cell
           best source of stem cells for cardiac regeneration   patients with severe left ventricular dysfunction.   Cardiol., 2002;34(2):241-9.
           therapy. Stem Cell Res. Ther., 2015, 6, 26.  J Endovasc Ther, 2004;11:695–704.
                                                                         45. SCHENKE-LAYLAND, K. et al. Adipose tissue-
          11. DOWELL, J. D. et al. Myocyte and myogenic stem   28 JI, S.T. et al. Promising therapeutic strategies for   derived cells improve cardiac function following
           cell transplantation in the heart. Cardiovasc Res.,   mesenchymal stem cell-based cardiovascular   myocardial infarction. J Surg Res, 2009;153:217–223.
           2003;58(2):336-50.              regeneration: From cell priming to tissue
                                           engineering. Stem Cells Int., 2017, 3945403.  46. SEROPIAN, I. M. et al. Anti-inflammatory
          12. DUCKERS, H. J. et al. Final results of a phase               strategies for ventricular remodeling following
           IIa, randomised, open-label trial to evaluate the   29. KIM, J. H. et al. Transplantation of Adipose-  ST-segment elevation acute myocardial
           percutaneous intramyocardial transplantation   Derived Stem Cell Sheet Attenuates Adverse   infarction. J. Am. Coll. Cardiol., 2014, 63,
           of autologous skeletal myoblasts in congestive   Cardiac Remodeling in Acute Myocardial   1593–1603.
           heart failure patients: the SEISMIC trial.   Infarction. Tissue Eng Part A, 2017;23:1–11.
           EuroIntervention, 2011;6:805–812.                             47. SIMINIAK, T. et al.  Percutaneous trans-coronary-
                                         30. LAROSE, E. et al. Percutaneous versus surgical   venous transplantation of autologous skeletal
          13. DURRANI, S. et al. Skeletal myoblasts for cardiac   delivery of autologous myoblasts after chronic   myoblasts in the treatment of post-infarction
           repair. Regen Med, 2010;5:919–932.  myocardial infarction: an in vivo cardiovascular   myocardial contractility impairment: the
                                           magnetic resonance study. Catheter Cardiovasc
          14. FAIELLA,W.; ATOUI, R. Therapeutic use of stem   Interv., 2010;75(1):120-7.  POZNAN trial. Eur Heart J, 2005;26:1188–1195.
           cells for cardiovascular disease. Clin. Trans. Med.,          48. SIMINIAK, T. et al. Autologous skeletal myoblast
           2016, 5, 34.                  31. LEOBON, B. et al. Myoblasts transplanted into   transplantation for the treatment of post
                                           rat infracted myocardium are functionally
          15. FARAHMAND P, et al.  Skeletal myoblasts   isolated from their host. Proc Natl Acad Sci U S A,   infarction myocardial injury: phase I clinical
           preserve remote matrix architecture and global   2003;100:7808–7411.  study with 12 months of follow-up. Am Heart J,
           function when implanted early or late after                     2004;148:531–537.
           coronary ligation into infracted or remote   32. MA, T. et al. A brief review: Adipose-derived   49. SMITS, P. C. et al. Catheter-based intramyocardial
           myocardium. Circulation, 2008;118:S130-1307.  stem cells and their therapeutic potential in   injection of autologous skeletal myoblasts as
                                           cardiovascular diseases. Stem Cell Res. Ther.,   a primary treatment of ischemic heart failure:
          16. FERNANDES, S. et al.  Autologous myoblast   2017, 8, 124.
           transplantation after myocardial infarction                     clinical experience with six-month follow-up. J
           increases the inducibility of ventricular   33. MAURO, A. Satellite cell of skeletal muscle fibers.   Am Coll Cardiol, 2003;42:2063–2069.
           arrhythmias. Cardiovasc Res., 2006;69(2):348-58.  J Biophys Biochem Cytol. 1961;9:493-5.  50. SOUZA, C. F.; ALVES, C. M. R.; CARVALHO, A. C. C.
          17. FINEGOLD, J. A.; ASARIA, P.; FRANCIS, D. P.   34. MAZO, M. et al. Treatment of reperfused   Skeletal Myoblast: fair abandonment? Rev Bras
           Mortality from ischaemic heart disease by   ischemia with adipose-derived stem cells in a   Cardiol., 2011;24(2):105-111.
           country, region, and age: Statistics from World   preclinical Swine model of myocardial infarction.   51. SUZUKI, K. et al. Overexpression of connexin-43
           Health Organization and United Nations. Int. J.   Cell Transplant, 2012;21:2723–2733.  in skeletal myoblasts: relevance to cell
           Cardiol., 2013, 168, 934–945.                                   transplantation to the heart. J Thorac Cardiovasc
                                         35. MCCONNELL, P. I. et al. Correlation of autologous
          18. FUKUSHIMA, S. et al.  Choice of cell-delivery   skeletal myoblast survival with changes in left   Surg., 2001;122(4):759-66.
           route for skeletal myoblast transplantation for   ventricular remodeling in dilated ischemic heart   52. SUZUKI, K. et al. Intracoronary infusion of
           treating post-infarction chronic heart failure in   failure. [Abstract]. J Thorac Cardiovasc Surg.,   skeletal myoblasts improves cardiac function in
           rat. PLoS One, 2008;3:e3071.    2005;130(4):1001.               doxorubicin-induced heart failure. Circulation
          19. GAVIRA, J. J. et al. Autologous skeletal myoblast   36. MENASCHE, P. et al. The Myoblast Autologous   2001;104:I213-217.
           transplantation in patients with nonacute   Grafting in Ischemic Cardiomyopathy (MAGIC)   53. VALINA, C. et al.  Intracoronary administration
           myocardial infarction: 1-year follow-up. J Thorac   trial: first randomized placebo-controlled   of autologous adipose tissue-derived stem cells
           Cardiovasc Surg, 2006;131:799–804.  study of myoblast transplantation. Circulation,   improves left ventricular function, perfusion, and
                                           2008;117:1189–1200.             remodelling after acute myocardial infarction.
          20. GAVIRA, J. J. et al. Repeated implantation                   Eur Heart J, 2007;28:2667–2677.
           of skeletal myoblast in a swine model of   37. MENASCHE, P. et al. Autologous skeletal
           chronic myocardial infarction. Eur Heart J.,   myoblast transplantation for severe post   54. VAN DEN BOS, E. J. et al. Functional assessment
           2010;31(8):1013-21.             infarction left ventricular dysfunction. J Am Coll   of myoblast transplantation for cardiac repair
                                           Cardiol, 2003;41:1078–1083.     with magnetic resonance imaging. Eur J Heart
          21. GAVIRA, J. J. et al. A comparison between
           percutaneous and surgical transplantation of   38. MURTUZA, B. et al. Transplantation of   Fail, 2005;7(4):435-43.
           autologous skeletal myoblasts in a swine model   skeletal myoblasts secreting an IL-1 inhibitor   55. VELTMAN, C. E. et al. Four-year follow-up
           of chronic myocardial infarction. Cardiovasc   modulates adverse remodeling in infarcted   of treatment with intramyocardial skeletal
           Res., 2006;71(4):744-53.        murine myocardium. Proc Natl Acad Sci U S A.,   myoblasts injection in patients with ischaemic
                                           2004;101(12):4216-21.           cardiomyopathy. Eur Heart J, 2008;29:1386–1396.
          22. GHOSTINE, S. et al.  Long-term efficacy of
           myoblast transplantation on regional structure   39. ORLIC, D.; HILL, J.; ARAI, A. Stem Cells for Myocardial   56. VERHEULE, S. et al. Characterization of gap
           and function after myocardial infarction.   Regeneration. Circ Res., 2002, 13, 1092–1102.  junction channels in adult rabbit atrial and
           Circulation, 2002;106(12 Suppl 1): I131-6.                      ventricular myocardium. Circ Res,1997;80(5):673-81.
                                         40. PAYNE, T. et al. A relationship between vascular
          23. HAGEGE, A. A. et al. Skeletal myoblast   endothelial growth factor, angiogenesis,   57. YIN, H.; PRICE, F.; RUDNICKI, M. A. Satellite
           transplantation in ischemic heart failure:   and cardiac repair after muscle stem cell   cells and the muscle stem cell niche. Physiol
           long-term follow-up of the first phase I cohort of   transplantation into ischemic hearts. J Am Coll   Rev,2013;93:23–67.
           patients. Circulation, 2006;114:I108-113.  Cardiol, 2007;50(17):1677-84.
                                                                         58. YU, L. H. et al. Improvement of cardiac function
          24. HE, K. L. et al. Autologous skeletal myoblast   41. POVSIC, T. J. et al. A double-blind, randomized,   and remodeling by transplanting adipose
           transplantation improved hemodynamics and   controlled, multicenter study to assess the safety   tissue-derived stromal cells into a mouse model
           left ventricular function in chronic heart failure   and cardiovascular effects of skeletal myoblast   of acute myocardial infarction. Int J Cardiol,
           dogs. J Heart Lung Transplant., 2005;24(11):1940-9.  implantation by catheter delivery in patients   2010;139:166–172.
                                                        70
   65   66   67   68   69   70   71   72   73   74   75